
Intro to Database Systems

15-445/15-645

Fall 2020

Andy Pavlo
Computer Science 
Carnegie Mellon UniversityAP

17 Two-Phase 
Locking

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020
https://15445.courses.cs.cmu.edu/fall2019/
http://www.cs.cmu.edu/~pavlo/
http://www.cs.cmu.edu/~pavlo/


15-445/645 (Fall 2020)

ADMINISTRIVIA

Project #3 is due Sun Nov 22nd @ 11:59pm.

Homework #4 is due Sun Nov 8th @ 11:59pm.

2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

ADMINISTRIVIA

Sign up for the student-run discussion groups.
→ Small group of at most 10 students where you can discuss 

the implementation details of the projects.
→ You can share test code, but you are not allowed to share

implementation code.

See Piazza@906 for more details.

3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://piazza.com/class/kdaz9wtp37u3pk?cid=906


15-445/645 (Fall 2020)

UPCOMING DATABASE TALKS

MySQL Query Optimizer
→ Monday Nov 2nd @ 5pm ET

EraDB "Magical Indexes"
→ Monday Nov 9th @ 5pm ET

FaunaDB Serverless DBMS
→ Monday Nov 16th @ 5pm ET

4

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-mysql/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-eradb/
https://db.cs.cmu.edu/events/quarantine-db-talk-2020-faunadb/


15-445/645 (Fall 2020)

L AST CL ASS

Conflict Serializable
→ Verify using either the "swapping" method or 

dependency graphs.
→ Any DBMS that says that they support "serializable" 

isolation does this.

View Serializable
→ No efficient way to verify.
→ Andy doesn't know of any DBMS that supports this.

5

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE

6

BEGIN
R(A)

W(A)

R(A)
COMMIT

BEGIN
R(A)

W(A)
COMMIT

T
IM

E
Schedule

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE

6

BEGIN
R(A)

W(A)

R(A)
COMMIT

BEGIN
R(A)

W(A)
COMMIT

T
IM

E
Schedule

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

OBSERVATION

We need a way to guarantee that all execution 
schedules are correct (i.e., serializable) without 
knowing the entire schedule ahead of time.

Solution: Use locks to protect database objects.

7

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Lock Manager

EXECUTING WITH LOCKS

8

Granted (T1→A)

Denied!

Granted (T2→A)

Released (T1→A)

Released (T2→A)

T
IM

E

BEGIN
LOCK(A)
R(A)

W(A)
R(A)
UNLOCK(A)

COMMIT

BEGIN
LOCK(A)

R(A)
W(A)
UNLOCK(A)
COMMIT

Schedule

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TODAY'S  AGENDA

Lock Types

Two-Phase Locking

Deadlock Detection + Prevention

Hierarchical Locking

Isolation Levels

9

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

LOCKS VS.  L ATCHES

10

Locks Latches

Separate… User transactions Threads

Protect… Database Contents In-Memory Data Structures

During… Entire Transactions Critical Sections

Modes… Shared, Exclusive, Update, 
Intention

Read, Write

Deadlock Detection & Resolution Avoidance

…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure
Source: Goetz Graefe

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15721.courses.cs.cmu.edu/spring2019/papers/06-indexes/a16-graefe.pdf


15-445/645 (Fall 2020)

BASIC LOCK T YPES

S-LOCK: Shared locks for reads.

X-LOCK: Exclusive locks for writes.

11

Shared Exclusive

Shared ✔ X

Exclusive X X

Compatibility Matrix

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXECUTING WITH LOCKS

Transactions request locks (or upgrades).

Lock manager grants or blocks requests.

Transactions release locks.

Lock manager updates its internal lock-table.
→ It keeps track of what transactions hold what locks and 

what transactions are waiting to acquire any locks.

12

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS

13

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T
IM

E
T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Schedule Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)
UNLOCK(A)

S-LOCK(A)
R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)
W(A)
UNLOCK(A)

COMMIT

EXECUTING WITH LOCKS

13

Granted (T1→A)

Granted (T2→A)

Released (T1→A)

Released (T2→A)

Granted (T1→A)

Released (T1→A)

T
IM

E
T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

CONCURRENCY CONTROL PROTOCOL

Two-phase locking (2PL) is a concurrency control 
protocol that determines whether a txn can access 
an object in the database on the fly.

The protocol does not need to know all the queries 
that a txn will execute ahead of time.

14

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TWO-PHASE LOCKING

Phase #1: Growing
→ Each txn requests the locks that it needs from the DBMS’s 

lock manager.
→ The lock manager grants/denies lock requests.

Phase #2: Shrinking
→ The txn is allowed to only release locks that it previously 

acquired. It cannot acquire new locks.

15

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks 
after the growing phase finishes.

16

# 
o

f 
L

o
ck

s

TIME

Growing Phase Shrinking Phase

Transaction Lifetime

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TWO-PHASE LOCKING

The txn is not allowed to acquire/upgrade locks 
after the growing phase finishes.

17

TIME

Transaction Lifetime

# 
o

f 
L

o
ck

s

2PL Violation!

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL

18

Granted (T1→A)

Denied!

T
IM

E
Schedule

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Lock Manager

BEGIN
X-LOCK(A)
R(A)
W(A)

R(A)
UNLOCK(A)
COMMIT

BEGIN
X-LOCK(A)

W(A)
UNLOCK(A)
COMMIT

EXECUTING WITH 2PL

18

Granted (T1→A)

Denied!

Released (T2→A)

Released (T1→A)

Granted (T2→A)

T
IM

E
Schedule

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

TWO-PHASE LOCKING

2PL on its own is sufficient to guarantee conflict 
serializability.
→ It generates schedules whose precedence graph is acyclic.

But it is subject to cascading aborts.

19

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Schedule

T1 T2

2PL CASCADING ABORTS

20

This is a permissible schedule in 
2PL, but the DBMS has to also 
abort T2 when T1 aborts.
→ Any information about T1 cannot 

be "leaked" to the outside world.

BEGIN
X-LOCK(A)
X-LOCK(B)
R(A)
W(A)
UNLOCK(A)

R(B)
W(B)
ABORT

BEGIN

X-LOCK(A)
R(A)
W(A)
⋮

This is all wasted work!

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

2PL OBSERVATIONS

There are potential schedules that are serializable 
but would not be allowed by 2PL.
→ Locking limits concurrency.

May still have "dirty reads".
→ Solution: Strong Strict 2PL (aka Rigorous 2PL)

May lead to deadlocks.
→ Solution: Detection or Prevention

21

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

STRONG STRICT TWO -PHASE LOCKING

The txn is not allowed to acquire/upgrade locks 
after the growing phase finishes.

Allows only conflict serializable schedules, but it is 
often stronger than needed for some apps.

22

TIME

# 
o

f 
L

o
ck

s

Release all locks at 
end of txn.

Growing Phase Shrinking Phase

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

STRONG STRICT TWO -PHASE LOCKING

A schedule is strict if a value written by a txn is 
not read or overwritten by other txns until that 
txn finishes.

Advantages:
→ Does not incur cascading aborts.
→ Aborted txns can be undone by just restoring original 

values of modified tuples.

23

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLES

T1 – Move $100 from Andy’s account (A) to his 
bookie’s account (B).

T2 – Compute the total amount in all accounts and 
return it to the application.

24

BEGIN
A=A-100
B=B+100
COMMIT

BEGIN
ECHO A+B
COMMIT

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Schedule

T1 T2

NON-2PL EXAMPLE

25

A=1000, B=1000

Initial Database State

A+B=1100

T2 Output

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
UNLOCK(A)

X-LOCK(B)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
UNLOCK(A)
S-LOCK(B)

R(B)
UNLOCK(B)
ECHO A+B
COMMIT

T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

2PL EXAMPLE

26

BEGIN
X-LOCK(A)
R(A)

A=A-100
W(A)
X-LOCK(B)
UNLOCK(A)

R(B)
B=B+100
W(B)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)

R(B)
UNLOCK(A)
UNLOCK(B)
ECHO A+B
COMMIT

T
IM

E
Schedule

T1 T2 A=1000, B=1000

Initial Database State

A+B=2000

T2 Output

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

STRONG STRICT 2PL EXAMPLE

27

BEGIN
X-LOCK(A)
R(A)
A=A-100
W(A)
X-LOCK(B)
R(B)
B=B+100
W(B)
UNLOCK(A)
UNLOCK(B)
COMMIT

BEGIN

S-LOCK(A)

R(A)
S-LOCK(B)
R(B)
ECHO A+B
UNLOCK(A)
UNLOCK(B)
COMMIT

T
IM

E
Schedule

T1 T2 A=1000, B=1000

Initial Database State

A+B=2000

T2 Output

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

All Schedules

UNIVERSE OF SCHEDULES

28

View Serializable

Conflict Serializable

No Cascading
Aborts

Strong Strict 2PL

Serial

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

2PL OBSERVATIONS

There are potential schedules that are serializable 
but would not be allowed by 2PL.
→ Locking limits concurrency.

May still have "dirty reads".
→ Solution: Strong Strict 2PL (Rigorous)

May lead to deadlocks.
→ Solution: Detection or Prevention

29

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

SHIT JUST GOT REAL,  SON

30

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

Schedule

T1 T2

Lock Manager

BEGIN
X-LOCK(A)

R(A)
X-LOCK(B)

BEGIN

S-LOCK(B)
R(B)
S-LOCK(A)

SHIT JUST GOT REAL,  SON

30

Granted (T1→A)

Denied!

Granted (T2→B)

Denied!T
IM

E

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

2PL DEADLOCKS

A deadlock is a cycle of transactions waiting for 
locks to be released by each other.

Two ways of dealing with deadlocks:
→ Approach #1: Deadlock Detection
→ Approach #2: Deadlock Prevention

31

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK DETECTION

The DBMS creates a waits-for graph to keep 
track of what locks each txn is waiting to acquire:
→ Nodes are transactions
→ Edge from Ti to Tj if Ti is waiting for Tj to release a lock.

The system periodically checks for cycles in waits-
for graph and then decides how to break it.

32

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK DETECTION

33

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

T
IM

E
Schedule

T1 T2 T3

Waits-For Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK DETECTION

33

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

T
IM

E
Schedule

T1 T2 T3

Waits-For Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK DETECTION

33

T1 T2

T3

BEGIN
S-LOCK(A)

S-LOCK(B)

BEGIN

X-LOCK(B)

X-LOCK(C)

BEGIN

S-LOCK(C)

X-LOCK(A)

T
IM

E
Schedule

T1 T2 T3

Waits-For Graph

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK HANDLING

When the DBMS detects a deadlock, it will select a 
"victim" txn to rollback to break the cycle.

The victim txn will either restart or abort(more 
common) depending on how it was invoked.

There is a trade-off between the frequency of 
checking for deadlocks and how long txns have to
wait before deadlocks are broken.

34

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK HANDLING:  VICTIM SELECTION

Selecting the proper victim depends on a lot of 
different variables….
→ By age (lowest timestamp)
→ By progress (least/most queries executed)
→ By the # of items already locked
→ By the # of txns that we have to rollback with it

We also should consider the # of times a txn has 
been restarted in the past to prevent starvation.

35

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK HANDLING:  ROLLBACK LENGTH

After selecting a victim txn to abort, the DBMS 
can also decide on how far to rollback the txn's
changes.

Approach #1: Completely

Approach #2: Minimally

36

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK PREVENTION

When a txn tries to acquire a lock that is held by 
another txn, the DBMS kills one of them to 
prevent a deadlock.

This approach does not require a waits-for graph 
or detection algorithm.

37

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK PREVENTION

Assign priorities based on timestamps:
→ Older Timestamp = Higher Priority (e.g., T1 > T2)

Wait-Die ("Old Waits for Young")
→ If requesting txn has higher priority than holding txn, then 

requesting txn waits for holding txn. 
→ Otherwise requesting txn aborts.

Wound-Wait ("Young Waits for Old")
→ If requesting txn has higher priority than holding txn, then 

holding txn aborts and releases lock.
→ Otherwise requesting txn waits.

38

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK PREVENTION

39

BEGIN

X-LOCK(A)
⋮

BEGIN
X-LOCK(A)

⋮

BEGIN
X-LOCK(A)

⋮ BEGIN
X-LOCK(A)

⋮

Wait-Die

T1 waits

Wound-Wait

T2 aborts

Wait-Die

T2 aborts

Wound-Wait

T2 waits

T1 T2

T1 T2

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DEADLOCK PREVENTION

Why do these schemes guarantee no deadlocks?

Only one "type" of direction allowed when waiting 
for a lock.

When a txn restarts, what is its (new) priority?

Its original timestamp. Why?

40

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

OBSERVATION

All these examples have a one-to-one mapping 
from database objects to locks.

If a txn wants to update one billion tuples, then it 
must acquire one billion locks.

Acquiring locks is a more expensive operation 
than acquiring a latch even if that lock is available.

41

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

LOCK GRANUL ARITIES

When a txn wants to acquire a "lock", the DBMS 
can decide the granularity (i.e., scope) of that lock.
→ Attribute? Tuple? Page? Table?

The DBMS should ideally obtain fewest number of  
locks that a txn needs.

Trade-off between parallelism versus overhead.
→ Fewer Locks, Larger Granularity vs. More Locks, Smaller

Granularity.

42

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

DATABASE LOCK HIERARCHY

43

Database

Table 1 Table 2

Tuple 1

Attr 1

Tuple 2

Attr 2

Tuple n

Attr n

T1

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE

T1 – Get the balance of Andy's shady off-shore 
bank account.

T2 – Increase Biden's bank account balance by 1%.

What locks should these txns obtain?
→ Exclusive + Shared for leaf nodes of lock tree.
→ Special Intention locks for higher levels.

44

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

INTENTION LOCKS

An intention lock allows a higher-level node to 
be locked in shared or exclusive mode without 
having to check all descendent nodes.

If a node is locked in an intention mode, then 
some txn is doing explicit locking at a lower level 
in the tree.

45

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

INTENTION LOCKS

Intention-Shared (IS)
→ Indicates explicit locking at lower level with shared locks.

Intention-Exclusive (IX)
→ Indicates explicit locking at lower level with exclusive locks.

Shared+Intention-Exclusive (SIX)
→ The subtree rooted by that node is locked explicitly in 

shared mode and explicit locking is being done at a lower 
level with exclusive-mode locks.

46

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

COMPATIBILIT Y MATRIX

47

IS IX S SIX X

IS ✔ ✔ ✔ ✔ ×

IX ✔ ✔ × × ×

S ✔ × ✔ × ×

SIX ✔ × × × ×

X × × × × ×

T
1

H
ol

ds
T2 Wants

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

LOCKING PROTOCOL

Each txn obtains appropriate lock at highest level 
of the database hierarchy.

To get S or IS lock on a node, the txn must hold at 
least IS on parent node.

To get X, IX, or SIX on a node, must hold at least 
IX on parent node.

48

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE TWO-LEVEL HIERARCHY

49

Table R

Tuple 2Tuple 1 Tuple n

T1

Read

Read Andy's record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE TWO-LEVEL HIERARCHY

49

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

Read

Read Andy's record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE TWO-LEVEL HIERARCHY

49

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

T2

Write

Update Biden's record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE TWO-LEVEL HIERARCHY

49

Table R

Tuple 2Tuple 1 Tuple n

T1

S
T1

IS
T1

T2

X
T2IX

T2

Write

Update Biden's record in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

Assume three txns execute at same time:
→ T1 – Scan R and update a few tuples.
→ T2 – Read a single tuple in R.
→ T3 – Scan all tuples in R.

50

Table R

Tuple 2Tuple 1 Tuple n

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

T1

Read Read+Write

Tuple 2

Read

Scan R and update a 
few tuples.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

Tuple 2

Scan R and update a 
few tuples.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

T1

SIX
T1

T2

X
T1

Read

Tuple 2

Read a single tuple in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Tuple 2

Read a single tuple in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

Read

T3

Tuple 2

Read Read

Scan all tuples in R.

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

T1

S
T2

SIX
T1

T2

X
T1IS

T2

T3

Tuple 2

Scan all tuples in R.

S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

T1

SIX
T1

X
T1

T3

Tuple 2

Scan all tuples in R.

S

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

EXAMPLE THREESOME

51

Table R

Tuple 1 Tuple n

X
T1

T3

Tuple 2

Scan all tuples in R.

S

S
T3

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

MULTIPLE LOCK GRANUL ARITIES

Hierarchical locks are useful in practice as each txn
only needs a few locks.

Intention locks help improve concurrency:
→ Intention-Shared (IS): Intent to get S lock(s) at finer 

granularity.
→ Intention-Exclusive (IX): Intent to get X lock(s) at finer 

granularity.
→ Shared+Intention-Exclusive (SIX): Like S and IX at 

the same time.

52

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

LOCK ESCAL ATION

Lock escalation dynamically asks for coarser-
grained locks when too many low-level locks 
acquired.

This reduces the number of requests that the lock 
manager must process.

53

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

LOCKING IN PRACTICE

You typically don't set locks manually in txns.

Sometimes you will need to provide the DBMS 
with hints to help it to improve concurrency.

Explicit locks are also useful when doing major 
changes to the database.

54

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

LOCK TABLE

Explicitly locks a table.

Not part of the SQL standard.
→ Postgres/DB2/Oracle Modes: SHARE, EXCLUSIVE
→ MySQL Modes: READ, WRITE

55

LOCK TABLE <table> IN <mode> MODE;

LOCK TABLE <table> <mode>;

SELECT 1 FROM <table> WITH (TABLOCK, <mode>);

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

SELECT. . .FOR UPDATE

Perform a select and then sets an exclusive lock on 
the matching tuples.

Can also set shared locks:
→ Postgres: FOR SHARE
→ MySQL: LOCK IN SHARE MODE

56

SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

CONCLUSION

2PL is used in almost DBMS.

Automatically generates correct interleaving:
→ Locks + protocol (2PL, SS2PL ...)
→ Deadlock detection + handling
→ Deadlock prevention

57

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

NEXT CL ASS

Timestamp Ordering Concurrency Control

58

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

PROJECT #3 QUERY EXECUTION

You will build a query execution 
engine in your DBMS.

59

R S

R.id=S.id

value>100

MAX(R.val)

⨝
s

γ

SELECT MAX(R.val)
FROM R JOIN S
ON R.id = S.id

WHERE S.value > 100

AggregationExecutor

NestLoopJoinExecutor

SeqScanExecutor IndexScanExecutor

Next()

Next() Next()

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

PROJECT #3 TASKS

Install Tables + Indexes in Catalog

Plan Node Executors
→ Access Methods: Sequential Scan, Index Scan
→ Modifications: Insert, Update, Delete
→ Miscellaneous: Nest Loop Join, Index Join, Hash-based 

Aggregation, Limit/Offset

60

https://15445.courses.cs.cmu.edu/fall2020/project3/

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/fall2020/project3/


15-445/645 (Fall 2020)

DEVELOPMENT HINTS

Implement the Insert and Sequential Scan
executors first so that you can populate tables and 
read from it.

You do not need to worry about transactions.

The aggregation hash table does not need to be 
backed by your buffer pool (i.e., use STL)

Gradescope is for meant for grading, not
debugging. Write your own local tests.

61

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

THINGS TO NOTE

Do not change any file other than the ones that 
you submit to Gradescope.

Rebase on top of the latest BusTub master branch.

Post your questions on Piazza or come to TA 
office hours.

62

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/


15-445/645 (Fall 2020)

PL AGIARISM WARNING

Your project implementation must be 
your own work.
→ You may not copy source code from other 

groups or the web.
→ Do not publish your implementation on 

Github.

Plagiarism will not be tolerated.
See CMU's Policy on Academic 
Integrity for additional information. 

63

https://db.cs.cmu.edu/
https://15445.courses.cs.cmu.edu/
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html

